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The collapsing ‘Lissajous-elliptic’ (LE) vortex ring is examined via quantifications 
of single- and multi-$lament Biot-Savart numerical simulations. In the single-filament 
simulations, parametric studies show simple relationships between the collapse bound- 
ary and the impulse and energy invariants. Collapse becomes non-monotonic in time, 
for a sufficiently small initial core ‘radius’. Self-similar, singular-like behaviour of the 
ofl-jilament strain-rate growth has been observed in a small interval, just prior to core 
overlapping. The computation of the strain-rate eigenvalues and vortex stretching in 
a diagnostics box surrounding the collapse region yields patterns observed previously 
in continuum simulations. New diagnostics are presented, including line densities of 
the energy and the linear and angular momentum, all of which approach zero in the 
collapse region of the ring. These diagnostics may provide critical parameters for 
initiating surgery in a topology-changing algorithm. Our multi-filament simulations 
exhibit layer-like vortex regions and a ‘torus’-shaped vortex stretching pattern ob- 
served previously in continuum periodic-domain simulations of vortex reconnection. 
Quantifications in a cross-section of the collapse region indicate that the circulation 
tends to concentrate in the head or frontside of the convecting dipolar structure. This 
is also the location of the incipient ‘bridge’ which is evolving from the weak filaments 
that have been convected from the initially outer-vortex regions. The formation of 
this smaller scale vortex structure exhibits the largest vorticity amplification in the 
variable-core model simulations. 

1. Introduction 
1.1. Collapse, reconnection and turbulent intermittency 

Tube-like vortex structures occur in many types of flows and are also predomi- 
nant in turbulence (Siggia 1981; Kerr 1985; She, Jackson & Orszag 1991; Vincent 
& Meneguzzi 1991; Douady, Couder & Brachet 1991; Douady & Couder 1993; 
Jimenez et a2. 1993; Vincent & Meneguzzi 1994). Interactions between vortex tubes 
frequently lead to collapse. We define collapse as: the approaching and antipar- 
allel alignment of vortex tubes which results in very large vorticity and strain-rate 
amplification (Siggia 1985; Siggia & Pumir 1985; Pumir & Siggia 1987; Ashurst 
& Meiron 1987; Pumir & Kerr 1987; Kida & Takaoka 1988; Meiron et al. 1988; 
Melander & Zabusky 1988; Kerr & Hussain 1989; Zabusky & Melander 1989; 
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Melander & Hussain 1989; Kida, Takaoka & Hussain 1991; Shelley & Meiron 1991; 
Zabusky et al. 1991; Shelley, Meiron & Orszag 1993; Boratav, Pelz & Zabusky 
1992; Kida & Takaoka 1994). The distant approach of wing tip vortices are an ex- 
ample of a collapsing vortex configuration (Crow 1970; Johnston & Sullivan 1994). 
Experimental realizations of collapse include the high-aspect-ratio elliptic vortex 
ring (Dhanak & de Bernardinis 1981; Oshima et al. 1988), two vortex ring colli- 
sion (Maxworthy 1972, §6; Fohl & Turner 1975; Oshima & Asaka 1977; Oshima, 
Noguchi & Oshima 1986: Schatzle 1987; Oshima & Izutsu 1988), the near head-on 
collision (Smith 1992; Smith & Wei 1994) and the head-on collision of two vortex 
rings with an instability (Lim & Nickels 1992). 

An important experimental and computational aspect of collapse is the growth of 
strain rate and the consequent vorticity amplification. In his experiments on vortex 
ring collision, Schatzle (1987) reported a ‘dramatic’ increase of the strain rate in a 
short amount of time, followed by a similar decrease as vortex reconnection ends. 
Confirmation of this behaviour was reported by Winckelmans (1989) in his numerical 
simulations of the same experiment. The characterization of the strain-rate growth and 
vorticity amplification is still controversial, In continuum simulations of antiparallel 
vortex tubes, Pumir & Kerr (1987) find that this type of interaction leads to vio- 
lent, although not divergent processes. Kerr & Hussain (1989) reported a significant 
increase in the peak vorticity, consistent with a singularity. Pumir & Siggia (1990) re- 
ported faster than exponential growth of vorticity for some initial time interval during 
collapse, but only exponential at later times. The core deformation during the close 
vortex interaction was considered the main effect that prevents the singularity for- 
mation (Ashurst & Meiron 1987; Pumir & Kerr 1987; Anderson & Greengard 1989; 
Pumir & Siggia 1990; Shelley & Meiron 1991). In simulations of initially orthogo- 
nally offset vortex tubes, Boratav et al. (1992) found that the fastest growing local 
quantity was the squared strain rate e with growth rate at least exponential, but 
slower than exp( exp(t) ). In simulations of the close interaction of initially antipar- 
allel vortex tubes, Kerr (1993) reported evidence of singular behaviour of the peak 
vorticity and the peak strain-rate growth. In evolutions from Kida’s highly symmetric 
initial condition, Boratav & Pelz (1994) found that the configuration collapses into 
a symmetrical hexapole state before reconnection and observe that the evolution 
of the maximum vorticity during this time scales as ( T  - TC)-l, where T is the 
time. 

Current research in turbulence examines the nature of vortex structures and inter- 
actions (Robinson 1991), including collapse (Zakharov 1988) and the existence of sin- 
gular solutions of the three-dimensional Navier-Stokes equations (Constantin 1994). 
However, direct numerical simulations of Navier-Stokes turbulence performed to 
date have the drawback that the available computer resources limit the resolution, 
and therefore the Reynolds number obtained in the simulations (She et al. 1991). 
Although low-resolution simulations did not exhibit collapse and reconnection 
(She, Jackson & Orszag 1990a, b), recent higher resolution simulations have suggested 
their presence (Chen & Shan 1992). Yet, collapse reconnection and turbulence exhibit 
similar behaviour : very large spikes of vorticity (in turbulence called intermittency) ; 
alignment of vorticity with the eigenvector of the middle eigenvalue of the strain rate 
(Ashurst et al. 1987; Kerr 1987; Jimenez 1992; Pumir & Siggia 1989, 1990; Boratav 
et al. 1992; Kerr 1993); and coincidence of mean-square strain-rate maxima regions 
with the alignment regions discussed previously (She et al. 1990b, 1991). These char- 
acteristics lead us to believe that collapse-reconnection can play an important role in 
intermittency of unforced or weakly forced high Reynolds number phenomena. 
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1.2. Filament simulations of collapse 
Numerical simulations of collapsing configurations using vortex filaments have been 
carried out for a long time. Arms & Hama (1965) applied the Local Induction 
Approximation equation (LIA) to a study of the evolution of elliptic vortex rings. 
In this work, Arms & Hama reported that experiments performed with dyed water 
showed a breakup into two rings (collapse) for the high aspect ratio ellipse. Moore 
(1972) studied the subsequent nonlinear growth of the disturbance in Crow’s instability 
(Crow 1970). His numerical computation with the regularized Biot-Savart line integral 
would later be known as the Rosenhead-Moore method. Motivated in part by these 
works and by the limitations of the local induction approximation, Dhanak & 
de Bernardinis (1981) conducted numerical simulations of elliptic rings with the 
Rosenhead-Moore algorithm and found collapse of high aspect ratio rings. In the 
studies of collapse done by Siggia and Pumir (Siggia 1985; Siggia & Pumir 1985; 
h m i r  & Siggia 1987), faster than exponential growth was found in quantities like 
curvature, inverse of distance between the filaments, length of filaments and inverse 
of core radius. However, their late-time results were affected by core overlap and 
did not properly represent realistic core deformations. Liu, Tavantzis & Ting (1986) 
studied various configurations with an asymptotic model of vortex stretching. They 
devoted special attention to the domain of validity of the single-filament results by 
comparing with Navier-Stokes simulations. Anderson & Greengard (1989) performed 
multi-filament simulations of two vortex ring collision. 

1.3. Areas covered by this work 
Vortex rings arise in a variety of jet flows of practical interest, including rect- 
angular, square, triangular and cross (Hussain & Husain 1989). The elliptic jet is 
a flow that has many features in common with the irregular-shaped jets. The 
elliptic vortex rings that form in this case present a rich panorama of complex 
behaviours (Hussain & Husain 1989; Husain & Hussain 1993), including the con- 
trollable collapsereconnection phenomenon, as discussed below. In this paper we 
advocate the experimental and direct numerical study of the parameter space of the 
‘Lissajous-elliptic’, or LE vortex ring, a three-dimensional object with a controllable 
short-time collapse behaviour, which we have studied using a single-filament Biot- 
Savart model (Fernandez, Zabusky 8z Gryanik 1994). Hence we started our studies 
by re-examining the elliptic vortex ring studies of Dhanak & de Bernardinis (1981). 

Siggia and Pumir (Siggia 1985; Siggia & Pumir 1985; Pumir & Siggia 1987) inno- 
vatively focused on the singularity problem. They introduced the antiparallel collapse 
concept and also examined one case of a ‘twisted’ elliptic vortex ring however, no for- 
mula for the initial state was given. In $ 2  of this paper, we introduce the Biot-Savart 
model and the initial conditions corresponding to a twisted or Lissajous-elliptic vortex 
ring. Section 3 defines some diagnostics for the consistency of the computations and 
diagnostics for vorticity amplification. Also presented are the practical validity limits 
of the filament model as reported by Ting & Klein (1991). In 9 4, we present paramet- 
ric studies of the evolution of the LE vortex ring. In $4.2, we report on the long-time 
behaviour of the algorithm, where accumulation of numerical error manifests itself 
through the appearance of a short-wave instability. The results for the collapsing LE 
vortex ring are presented in Q 5. In contrast with previous works, we examine maxima 
of the strain rate o f t h e  vortexjilaments, as this quantity has been observed to be larger 
than on the vortex tubes (Zabusky et al. 1991; Boratav et al. 1992) and its growth is 
faster than exponential prior to Ting’s validity limit of the Biot-Savart model. We also 
focus on the largest eigenvalue a of the strain-rate matrix, because it coincides with 
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the direction of the ‘outgoing’ bridges in vortex reconnection (Kida & Takaoka 1987; 
Zabusky et al. 1991; Kida, Takaoka & Hussain 1991; Boratav et al. 1992). If a suf- 
ficiently small initial core radius is used, the strain-rate diagnostics indicate that 
collapse becomes non-monotonic. Our visualizations of the strain rate and vortex 
stretching fields present patterns that have been observed previously in continuum 
simulations of vortex reconnection. 

In $6, initial attempts are made to obtain an asymptotic model for single-filament 
collapse by applying a self-similarity ansatz to the motion invariants. This procedure 
suggests that the line densities of linear and angular impulse and energy approach 
zero in the collapse region of the filament. The numerical results show that the 
collapse regions on the ring do exhibit motion-invariant densities tending to zero, 
and indicate that these quantities are appropriate diagnostics for identifying collapsed 
filament regions in a topological-alteration (‘surgery’) algorithm. 

In 9 7, we present multi-filament simulations and observe vortex core flattening. 
The strain rate and vortex stretching patterns are similar to the ones observed in 
the single-filament simulations. The vortex stretching function in the multi-filament 
simulations is closer to the ‘torus’ shape observed in the continuum simulations 
(Zabusky et al. 1991). The vorticity and strain-rate growth do not saturate in the case 
of the variable-core model. Finally, in 0 8, we present our conclusions. 

2. Biot-Savart model, initial conditions and algorithm 

Biot-Savart law 
For incompressible motion, the velocity field induced by vorticity is given by the 

dV’ . (x - x’) x w(x’, t’)  
u(x,t’) = -- 

47c 
The vorticity o = V x u is convected like particles and stretched according to 

DfD 
- = w-vu. 
Dt’ 

Computing flows with Biot-Savart models is advantageous in that the computational 
elements can be placed in regions of high ‘activity’ (vortex stretching) and many 
fewer test elements can be placed in other regions. Biot-Savart models also allow 
us to effectively perform inviscid computations with no accumulation of numerical 
diffusion (Leonard 1980, 1985; Anderson & Greengard 1989). 

2.1. Vortex method 
We use the numerical scheme developed by Knio & Ghoniem (1990) to compute the 
evolution of a closed tubular vortex region or filament with vorticity 

(2.3) 

where ~ ( o , t ’ )  is the line-axis of the filament of circulation r ,  o is the initial arc 
length along the filament and 6 is the core radius in the third-degree exponential 
regularization function 

This non-compact support regularization function approximates the delta function in 
the limit of small delta and has second-order accuracy (Beale & Majda 1985). If w 
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(2.3) is substituted into the Biot-Savart law (2.1), one obtains the velocity induced by 
the vortex filament 

where 

(2.6) 
for the third-degree exponential core function fa.  An integro-differential equation for 
the curve ~(cr,t*) representing the filament is obtained in the inviscid case by using 
the fact that vortex lines are advected as material lines: 

g ( P )  = 1 - exp( - P 3 / d 3  1 ,  

The time-dependent arc length s is defined by 

(2.7) 

2.2. Initial conditions 
Our initial conditions consist of a vortex filament with circulation r ,  initial core 
radius 6(a,0) = 60 and ‘Lissajous-elliptic’ form (figure 5 )  

(2.9) 

where 0 < 8 d 2.n. The grid points are located at equally spaced intervals A8 or 
at variable intervals, with the smaller intervals on the collapse region. We call this 
geometry the ‘Lissajous-elliptic’ ring, or LE ring, because of its projections on two 
orthogonal planes. Besides the fact that its parameter space contains cases of very 
rapid collapse, the low number of parameters of this configuration allows a complete 
parameter study at less computational expense. The ellipse c = 0 presents maximum 
curvature at 8 = 0. At this point the LE ring has curvature 

(XI, x2, ~ 3 )  = (a cos 8, b sin 8, c sin28) , 

a 
b2 + 4c2 

x(e = 0)  = (2.10) 

For values of b corresponding to the collapsing high-aspect-ratio ellipse, the maximum 
curvature becomes so large that its inverse has values close to the vortex core radius. 
The use of the LE ring with c > 0 allows collapsing configurations to be obtained 
without the high-curvature regions of the original plain ellipse, as can be seen in 
expression (2.10). High-curvature regions are not desired as they are outside the 
validity limit of the Biot-Savart model. Another advantage is the antisymmetry, 
which is exploited to decrease the computational expense of the runs. The amplitude 
c determines the amount of ‘twisting’ of the original elliptic ring. The circulation r ,  
the geometric parameters a, b, c and the initial core radius 60 can be translated into 
values of the linear impulse, angular impulse and energy invariants. The parameter 
space is reduced further by choosing the normalizations T = 1 and a = 1. 

2.3. Discretization of equations 
Following Knio & Ghoniem (1990) we replace equation (2.7) by 

(2.11) 
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where the nodes of the filament axis are at xi = x(oi, f), with i = 1,. . . , N and where 
Axj is the central difference 

Axi = i (  2 xj+1 . - x j - l )  (2.12) 

Vorticity is automatically updated as the differentials Axi are computed at the new 
time because material elements obey the same evolution equation as vorticity. For 
small values of p/6 ,  the factor g(p) /p3 in (2.11) is evaluated numerically using the 
Taylor expansion of the function g. Time integration is carried out using a second- 
order Euler predictor-corrector scheme. In the single-filament runs, we varied the time 
step systematically to check the convergence of the results. These convergence studies 
were used in combination with an estimate, presented in 67, to select the time step 
for the multi-filament simulations. In the algorithm, by 
spatial resolution is achieved by adding new grid points 
stretching. 

For purposes of adaptive meshing and diagnostics, we 

2 6 j  
q .  = - 9  ’ hj 

which we call the longitudinal ‘overlapping’ and where 

Knio & Ghoniem, variable 
at regions of large filament 

measure the quantity 

(2.13) 

hj Ixj+l -1jl. If 4 = 1, 
neighboring vortex elements are just touching. If q >> 1, the discretization approaches 
the continuum. Convergence of the three-dimensional vortex method, including the 
filament approach, has been studied by, among others, Beale & Majda (1982), Perlrnan 
(1985), Anderson & Greengard (1985) and Greengard (1986). Adequate resolution 
is obtained with q - 4 (Knio & Ghoniem 1990). The criteria we use for adding 
new grid points maintains a prescribed minimum overlapping. The algorithm used 
to add the new grid points is critical because it may introduce discontinuities in 
the higher derivatives of the curve. The numerical noise produced by the variable 
resolution is particularly visible when differentiating the curve to produce graphs of 
curvature IC and torsion z, defined in equations (3,1), (3.2), versus s. Although the 
linear interpolation used by Knio & Ghoniem for introducing new grid points is more 
economical, in order to obtain smooth diagnostics involving derivatives of the curve 2, 
we find that a cubic spline interpolation algorithm is essential. An alternative scheme 
which avoids the evolutionary adaptive mesh is to initially insert many points in what 
will be the region of collapse, so that at the end of the run, we still have the prescribed 
minimum resolution with a constant number of grid points. This procedure can be 
accomplished after the collapse region has been identified in a previous conventional 
run with variable resolution and therefore involves an iterative process. 

We compute with both a constant and a locally variable core. In the latter case we 
use the volume preserving rule 

6*(aj, t ’) h(ai, t’) = const , (2.14) 

to control the core radius 6, where h was defined previously. The constant-core model 
presents smaller variations of energy and linear impulse in the collapse runs (see 8 5 ) .  
At present, there is no rule for varying the core radius that preserves both energy 
and volume and there is therefore some ambiguity in choosing the proper model. In 
practice, the characteristics of the variable-core-radius model permit continuation of 
the collapse computations further to some extent, because the overlapping time to,, 
which is the time when the approaching filaments touch for the first time, occurs 
later. Conversely, short-wave instabilities may develop earlier, as described in 0 4.2. 
In cases with large vortex stretching the conservation of volume is certainly violated 
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by the constant-core model. For long runs without large vortex stretching, it is 
very important to conserve energy, therefore the constant-core model seems to be 
more appropriate. For the strain-rate amplification of our single-filament collapsing 
configurations, there is agreement, up to a reasonable time, between the two models, 
the variable-core model having only a small variation in the energy at the end of the 
run. 

Finally, we use a dimensionless time (Dhanak & de Bernardinis 1981) defined by 

(2.15) 

The strain rate and the vorticity are also non-dimensionalized with the same time 
scale, ts = 4na2/r. 

3. Diagnostics 
To evaluate the information provided by our numerical simulations, we have 

implemented two different kinds of measures, one to quantify the quality of the runs 
and the other to provide physical insight into the processes observed. We introduce 
the core-normalized curvature i7 and torsion 7: 

iC-(s,t’) = K 6 = I xi I 6 (3.1) 

and 
X’ ( 2’’ x X”’ ) 

7(s , t*)  = z 6 = . 6 ,  

where ’ denotes derivative with respect to s and is computed by approximating x 
with a cubic spline. Plots of curvature and torsion along the filament are especially 
interesting local diagnostics, because they show any growing instability long before it 
becomes visible on the ring. We also examine the velocity in the local Frenet-Serret 
frame 

where i, il and 3 are the tangent, normal and binormal unit vectors respectively, 
evaluated also using the cubic spline. 

(u;,ufi,ug) = ( u 4 , u . A  , u - 3 ) ,  (3.3) 

3.1. Motion invariants 
The motion invariants are global diagnostics which allow evaluation of the numerical 
computations in terms of their physical validity. Also, the classification of results 
according to the invariants is more natural than that in terms of the circulation r , the 
geometric parameters a, b, c and the initial core radius 60 because of their physical 
implications. The motion invariants we compute are the linear impulse, the angular 
impulse and the kinetic energy. Using the filament vorticity distribution (2.3) with 
any appropriate regularization function yields 
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where 

Therefore linear and angular impulse are independent of core radius for the regular- 
ized filament. In particular, for the LE ring (2.9) we have 

P = (0, 0, r n a b ) ,  (3.8) 
3n 

M = (0, 0, r c (b2 - a 2 ) )  (3.9) 
4 

We denote the non-zero components of the linear and angular impulse by P and M 
respectively. Replacing the core function fs  by the delta function in equation (3.6) 
results in an approximation (Winckelmans 1989; Winckelmans & Leonard 1993) for 
the energy 

(3.10) 

which we use throughout this work. Substituting the core function (2.4) in the 
definition (3.7), we obtain 

(3.11) 

where ? denotes the incomplete gamma function (Fernandez 1994). 

3.2. Long-time behaviour diagnostics 
The tests to establish the long-time behaviour of the algorithm were made with elliptic 
rings c = 0. For this case, we re-examine three global diagnostics previously employed 
by Dhanak & de Bernardinis (1981). The first one corresponds to the velocity of the 
centroid of the ring. The centroid is defined by 

(3.12) 

Because of symmetry, the centroid has zero components in the (xl, 22) plane. The 
second diagnostic is the variance 

(3.13) 

Note that for the elliptic ting (c  = 0), a perfectly periodic case with period 7’’ would 
have minimum variance &in = 0 at any t’ = n T’.  Finally, we check the oscillation 
period of the ring using Dhanak & de Bernardinis’ (1981) expression 

T;h(R,d,A) = - 8n2R2 r [ { 4 (In f - A )  + 0.22} { 3 (In - A )  + 2.23}] -1’2 , 

(3.14) 
obtained from Widnall & Sullivan’s (1973) angular frequency for the oscillation of 
a ring. In this equation, R = (a + b)/2 and A = -2.439 x for our case. The 
value of A was obtained by comparing the velocity of the circular ring computed 
numerically with the velocity given by the asymptotic expression obtained by SaRman 
(1970). 
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3.3. Measures of vorticity amplijication 

The rate of change of vorticity is given by equation (2.2). Decomposing Vu into 
symmetric and antisymmetric parts, it can be shown (Winckelmans 1989) that 

U .  
(V + VT) - = 0'  

D o  
Dt* 2 

(3.15) 

Therefore, the vorticity amplification depends on the strain-rate tensor 

dv' = S.. (3.16) 
( V + V T )  D(x - x') CO(X', t') 

U ( X , t  ) = - 11 3 2 8.n 

where 

D(x) v = (X x V) @I x + x 8 (X x V) , (3.17) 

with &, denoting the dyadic product. For a vortex filament, we use (2.5) and obtain 

where 

(3.18) 

For the third-degree exponential core function, with g 
have 

(3.19) 

given in equation (2.6), we 

(3.20) 

The eigenvalues of the strain-rate matrix obtained from the tensor (3.16) or (3.18) are 
denoted by a, j? and y with a > f i  > y and, because of incompressibility, a+fi+y = 0. 
We compute the strain-rate eigenvalues as local diagnostics. Regions with maximum a 
in the flow may have very large vortex stretching. In some works (Boratav et al. 1992) 
measures of the square strain rate, 

f = S..S.. 11 '1 = a* + p 2 + y 2 ,  (3.21) 

are given as a diagnostic for vorticity growth. We also wish to remark here that the 
possible breakdown of smooth solutions of the incompressible three-dimensional Euler 
equations implies that the maxima of both the vorticity and the strain-rate norms 
grow without bound as the critical time approaches (Beale, Kato & Majda 1984; 
Ponce 1985). 

Large vorticity amplification will only be possible if vorticity coincides in position 
and direction with regions of large strain rate. To search for these regions, we compute 
the normalized vortex stretching 

exp( -p3'83 6 3  '> * 

- 3 
d P )  = 1 

1 - exp( - p 3 / d 3  ) 

( P3 P 

(3.22) 

and the normalized rate of change of the magnitude of vorticity, given by the quadratic 
form 

(3.23) 
1 Dlol o (V+VT) o 

which also are local diagnostics. Vorticity amplification in terms of stretching of 

o (V+VT) 
u ,  - 

1 Do -.- - -. 
1 0 1  Dt' 1 0 1  2 

U ' -  _- - - -_ - .  1 Dim2 - - S" = 
o2 Dt* 1 0 1  Dt' 101 2 101' 
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(3.24) 

in the right-hand side of equations (3.22), (3.23). 

defined by 
As a geometric measure of collapse, we compute the distance in projection d, 

(3.25) 

that is, the distance to the axis (O,O,x3) from the point on the filament closest 
to this axis. The distance d, = dmin/2  because of antisymmetry, where dmin is the 
minimum distance between the collapsing segments of the filament (figure 5). Singular 
behaviour implies that the interfilament distance must decrease sufficiently rapidly 
(Fukuyu & Arai 1991). We denote the point on the filament corresponding to d,,, 
by xd,. We define the collapsing point xc as the material point on the filament 
corresponding to Xd, at the overlapping time to, (i.e. Xc(t,,) = Xd,(t,,) ). At the 
overlapping time to, we have 6 / d ,  = 1. Note that most of the time xC # Xd, since 
Xd, is not in general a material point. Only as collapse proceeds does the collapsing 
point xc move towards xd, .  

It has been observed (Zabusky et al. 1991; Boratav et al. 1992) that the strain-rate 
amplification during collapsereconnection is maximum off the vortex tubes. This 
motivates us to search this field in the surroundings of our vortex filaments. To 
accomplish this task, we proceed in two ways. One is to compute the maximum tl, of 
the largest strain-rate eigenvalue a (3.16) on the axis (O,O, x j )  for x3 2 X3d, .  We choose 
this axis because the filament collapses towards it. The upper part is chosen because it 
is in this region, above the filaments, where bridge formation takes place during vortex 
reconnection. The other way is to compute the vorticity amplification diagnostics on 
the filament and also in a diagnostics box, which covers some neighbourhood of the 
filament segment containing the point Xd,, or the point detected as having the largest 
stretching according to (3.23). This automatically finds any collapsing region, if one 
is present. The diagnostics box is shown in figure 12 for the last time computed of 
the collapsing LE ring with initial core radius 60 = 0.07595. 

3.4. Limits of validity of the $lament approach 
The filament vorticity distribution given by (2.3) assumes a core structure that does 
not change in time. This assumption is valid when the core radius 6(0, t )  is much 
smaller than any other length scale in the flow (Ting & Klein 1991 ; Leonard 1985). 
Conversely, we know that, in fact, very closely interacting vortex tubes suffer large 
core distortion (Ashurst & Meiron 1987; Pumir & Kerr 1987; Anderson & Greengard 
1989; Pumir & Siggia 1990; Shelley & Meiron 1991; Zabusky et al. 1991; Kida et 
al. 1991; Boratav et al. 1992). Practical limits of validity for the filament model have 
been reported by Ting & Klein (1991) to be 

&in dmin 

6 26 
- 2 kl = 2 and - 2 k2 = 1.5, (3.26) 

where &in is the minimum radius of curvature of the filament and dmin is the minimum 
distance between two distinct points of the filament that have the same core radius. 
These values for kl and k2 were verified (Ting & Klein 1991) by a comparison of 
numerical results obtained using an asymptotic model with vortex stretching with 
numerical solutions of the Navier-Stokes equations. These values are moderate in 
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(b) 

Collapse 
0.8 f k 

No collapse No collapse 
0.2 

L L ! g ? A  1 
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 

b b 
FIGURE 1. Parameter space of the Lissajous-elliptic (LE) vortex ring with the normalizations T = 1 
and a = 1, in terms of (a)  the geometry and (b)  the energy and linear impulse. The curves are the 
collapse boundaries for three different initial core radii. The elliptic vortex ring study by Dhanak 
& de Bernardinis is marked with DdB. 

that the difference between asymptotic and numerical solutions remains less than 2% 
if these particular values of kl and k~ are chosen (Ting & Klein 1991). 

4. Parameter study 
After reducing the parameter space with the normalizations r = 1 and a = 1, the 

parameters to be explored are b, c and the initial core radius 60. In terms of the 
motion invariants, if a is constant, the non-zero component of the linear impulse P is 
proportional to b and independent of c, as can be seen in equation (3.8). Therefore, 
the impulse of the ring is equivalent to b. In figure 1, we see the regions corresponding 
to the different types of evolution of the LE ring. The first region has periodic or 
nearly periodic oscillations and is characterized by small values of c and values of b 
close to 1. The form of such vortex rings is close to a low-aspect-ratio ellipse. The 
second type of region corresponds to values of the geometric parameters that produce 
regions of high normalized curvature (3.1), either initially or almost immediately after 
the initial time. We call these regions ‘local collapse’ regions and they appear at the 
lower left, for small values of b and c. These rings are close to high-aspect-ratio 
ellipses. The LE ring also presents a region of ‘non-local collapse’ as discussed below. 

4.1. Collapse region in the parameter space 
Non-local collapse occurs when two opposite segments of the vortex filament form an 
antiparallel approaching configuration (figure 5) .  The boundary of this collapse region 
is marked in figure 1 for three different initial core radii do. We observe that for any 
given value of b > 0.3, the non-local collapse boundary can be crossed by increasing 
c (figure la ) .  For a smaller initial core radius, the collapse boundary shifts towards 
higher values of c. The corresponding shift of the collapse boundary in the energy 
graph shows that for a smaller initial core radius, higher levels of energy are required 
for collapse (figure lb). Finally, between the collapse and non-collapse regions, there 
is a narrow region, not shown in figure 1, with non-monotonic collapse that we call 
the ‘bounce’ region. The bounce process can also be generated by taking a set of 
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geometric parameters in the collapse region and decreasing the initial core radius 
while keeping the other parameters constant. This causes the collapse boundary to 
shift upward, leaving the point, defined by the geometric parameters kept constant, in 
the bounce region. We show this sequence of parameter variation in 0 5. The change 
in initial core radius represents a fundamental change in the initial conditions because 
the collapse boundary is shifted, which may be a consequence of changing the energy 
balance on the ring. The region of the parameter space corresponding to the elliptic 
vortex ring (c  = 0), explored previously by Dhanak & de Bernardinis (1981), is also 
indicated in figure 1. They found non-local collapse for b = 0.2 which corresponds 
to a high-aspect-ratio ellipse. A potentially useful case that could be compared with 
other types of analysis and experiments of collapse is the ‘Lissajous-circle’, in which 
a = b = 1 (Fernandez et al. 1994). The remaining free parameters in this case are c 
and the initial core radius 60. In terms of the motion invariants, the linear impulse 
P and the angular impulse M are now constant parameters. In particular, M is the 
null vector. 

In the next sections we present in more detail the results in two additional regions 
of the parameter space. The first corresponds to the periodic or nearly periodic 
region, and the second corresponds to the non-local collapse region with its transition 
to bouncing. 

4.2. Long-time behaviour : Widnall’s instability 
The region in the parameter space corresponding to the low-aspect-ratio ellipse 
presents a periodic or near-periodic oscillating evolution of the vortex ring, with the 
period given by (3.14). This is a good test case for the algorithm, and in particular 
for its long-time behaviour. We use the elliptic ring with r = 1,a = 1, b = 0.8, c = 0 
and the initial core radius 60 = 0.126 and perform runs with the adaptive mesh and 
both the constant- and variable-core models. By varying the numerical parameters, 
we find that the overlapping q, defined in equation (2.13), governs the nature of the 
long-time behaviour. We examine first the results with the constant-core model. We 
observe (table 4.1 in Fernandez 1994) that, after starting with a low overiapping, 
quantities like the mean velocity of the centroid zi, the minimum variance Zmin and 
the oscillation period T ,  all computed using five periods of oscillation of the ring, 
show convergence as q increases. For values of minimum overlapping along the ring 
qmin < 10, the algorithm is able to compute up to 24 periods of oscillation, which 
is equivalent to -12 000 At time steps, with At = 2.0 x For qmin > 10, as the 
number of grid points is increased, a deterioration in the numerical accuracy manifests 
itself by a breakdown of the algorithm at an earlier time, which is also registered 
by the destruction of the convergence. Similar behaviour has been reported for the 
Rosenhead-Moore algorithm (Hon & Walker 1988). The nature of the breakdown is 
shown in figure 2. In figure 2(a), we can see the top view of the vortex ring at the 
initial time, at 5.5 periods of time and at the breakdown time. At this final time, an 
rn = 10 mode is visible on the ring. In the graph of the velocity of the centroid, defined 
by (3.12) and presented in figure 2(b) ,  we observe a regular and clean behaviour up 
to 5 or 5.5 periods of oscillation of the elliptic ring. The graph of the variance C, 
which is defined by (3.13) and presented in figure 2(c), has similar behaviour. At 
this stage of the computation ( t  - 5), the period of oscillation computed numerically 
is T = 0.9744 for no = 256 grid points which, when compared with the theoretical 
value of TJts  = 0.95951, given by (3.14) and the normalization (2.15), shows a 
difference of about 1.6%. At 5.5 periods, we observe in the graphs of the velocity 
of the centroid and the variance the appearance of a long-wave mode superposed to 
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FIGURE 2. Algorithm long-time behaviour in the periodic regime. (a) Top view of the ring at 
times t = 0, 5.34 (5.5 periods) and 11.97. Also shown (b)  the velocity of the centroid and ( c )  the 
variance 2 us. time t. The vortex ring parameters are b = 0.8, c = 0 and 60 = 0.126. The time 
step is A t  = 2.0 x lop3, the minimum initial overlapping is qmin = 10.27 and the maximum initial 
normalized curvature is Em,, = 0.197. 

the original oscillations. Nevertheless, no sign of the perturbation can be seen on the 
ring (figure 2a) at this time. For t - 11, the computation breaks down for numerical 
reasons, as seen in the graphs of the velocity of the centroid and the variance. The 
m = 10 mode, visible on the ring at the final time shown, is consistent with the linear 
theory by Widnall et al. (Widnall & Sullivan 1973; Widnall, Bliss & Tsai 1974) for 
the case of the ‘spurious’ short wave, and is independent of time step and machine 
precision (table 4.1 in Fernandez 1994), although it seems to need enough spatial 
resolution to develop ( qmin - 10 ). Lower resolution seems to have a smoothing 
effect, since these cases break down much later in time, as mentioned previously, 
through the appearance of smaller, non-smooth ‘wiggles’. 

A closer look into the m = 10 mode can be obtained by considering the overlapping 
q and the normalized curvature i7 and torsion T ,  given by (2.13), (3.1) and (3.2), us. 
the arc length s along the vortex ring. These quantities are plotted in figure 3 for the 
time at 5.5 periods ( t  = 5.34). We see that even though the ring, top and side views 
of which are also shown, does not have visible traces of the m = 10 mode, they are 
clearly present in the derivatives of the curve as shown by the overlapping and the 
normalized curvature and torsion. They are also present in the normalized rate of 
change of the magnitude of vorticity sw, defined by (3.23), on the filament and the 
energy density, which we do not show for this case and which we introduce later. 
At the breakdown time, presented in figure 4, the m = 10 mode is visible on the 
filament. The derivatives now show that the regular waves observed in the previous 
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FIGURE 3. (a) Top and side views of the elliptic ring at 5.5 periods ( t  = 5.34). The m = 10 mode, not 
visible on the ring, is present in the graphs of (b)  the overlapping q, (c )  the normalized curvature iz, 
( d )  the normalized torsion ? and (e) the normalized rate of change of vorticity magnitude s, us. arc 
length s. 

picture have evolved by this time into a ten-spikes pattern. Irregularities are also 
present in the rate of change of the magnitude of vorticity sue The blow up in the 
local curvature visible in the ten spikes of this graph is an example of ‘local collapse’. 
By this time, the curvature validity limit of the Biot-Savart model in (3.26) has been 
largely violated. Local collapse has been studied recently by Klein & Majda (1991) 
for the case of a perturbed helical vortex filament, using an asymptotic filament 
equation with self-stretching (see also Klein & Knio 1995). For this constant-core 
case, the changes in impulse and energy at the end of the run were about -1.6% 
and -1.07% respectively. The variable-core-radius model also produces the m = 10 
mode, but this one develops earlier. For this case, the waves are visible after the 
third period of oscillation of the elliptic ring. Conversely, changes in impulse and 
energy are considerably larger than those obtained in the constant-core-radius model. 
Knio & Ghoniem (1990) have performed studies of the instability of the circular ring 
using the same algorithm and have shown the same unstable mode. In contrast with 
the present work, however, they do not have a second harmonic, i.e. the oscillating 
elliptic ring, and they introduce an initial perturbation. The only perturbation we 
have is error, from which the Biot-Savart model picks up the most unstable mode. 
Even though the rn = 10 mode appears in a very consistent and smooth manner, it 
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FIGURE 4. (a) Top and side views of the ring at breakdown time t = 11.97. The m = 10 mode has 
become visible on the ring. In the graphs of (b) overlapping q, (c )  normalized curvature i? and (d )  
normalized torsion 7 the ten waves have evolved into a ten-spikes pattern. The graph (e )  with the 
normalized rate of change of vorticity magnitude s, also shows irregular behaviour. 

is outside the range of validity of the Biot-Savart model because the wavelength of 
this mode is of the order of the core radius. Therefore we should expect distortions 
of the core structure, which we cannot simulate with this model. 

Our studies with the low-aspect-ratio elliptic ring have shown the breakdown 
characteristics of the algorithm we are using. We have learned that well-resolved 
runs in space and time will break down through the appearance of short waves. 
The perturbation that feeds this instability is numerical and has an impact mainly 
on the long-time behaviour of the algorithm. We are interested in the study of 
collapsing configurations. Collapse phenomena involve such short developing times 
that these long-time behaviour effects become unimportant. Long-time behaviour 
effects may start appearing only if the collapse parameters are changed so that 
collapse is delayed, but, even in this case, through the studies just presented, we have 
gained some knowledge that allows us to identify these effects. 

5.  Collapse of the Lissajous-elliptic ring 
The collapsing LE vortex ring is presented in figure 5,  where we show the projections 

of the ring on orthogonal planes at different times. The parameters of this run, 
designated as the ‘bounce case’, are r = 1, a = 1, b = 0.4, c = 0.5 and initial core 
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FIGURE 5. Lissajous-elliptic (LE) vortex ring projections onto orthogonal planes at different times 
in its evolution towards collapse. The times presented are t = 0, 0.045, 0.09, 0.135 and 0.18. 
Also represented are the paint Xd,, closest to the axis (O,O,x3) and the collapsing point xc.  The 
ring parameters are b = 0.4, c = 0.5 and 60 = 0.02, with the variable-core model. The time step 
is A t  = the minimum initial overlapping qmin = 5.42 and the maximum initial normalized 
curvature Emax = 0.0792. Position of projections does not correspond to actual motion of the ring. 

radius 60 = 0.02. This filament was discretized initially with no = 1600 grid points. 
This run was performed with the alternative scheme, i.e. no addition of new grid 
points, but with an initially higher density of grid points on the collapsing segments of 
the ring. The time step was At = The initial minimum overlapping and maximum 
normalized curvature are qmin = 5.42 and Emax = 0.0792 respectively. Runs performed 
at various spatial and temporal resolutions indicated convergence of the results. 
The amount of twisting of the ellipse, specified by the c value, corresponds to an 
orthogonally offset configuration in the (XI, ~ 3 )  projection (figure 5).  As time elapses, 
the ring with the initial orthogonal offset moves towards the antiparallel configuration 
characteristic of collapse. The computation is stopped at the overlapping time too 
where d m / 6  = 1, which occurs just beyond the time t = 0.18 presented in figure 5. The 
overlapping time for the computation on the figure is at to, - 0.1814. The validity 
limit d,/6 = 1.5, as given by (3.26), is reached at t - 0.1806, also after the last 
time shown in figure 5, which corresponds to a computation with the variable-core 
model and the smallest initial core radius presented in this paper. The figure for the 
constant core model presents no visible differences. The use of the variable-resolution 
algorithm does not show significant changes in the diagnostics that follow, except 
in the graphs of curvature and torsion (figure 7), where non-smooth behaviour is 
observed in the regions of the filament where the new grid points have been added. 
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FIGURE 6. Time evolution of (a) the non-zero component of linear impulse P and (b)  the energy E 

of the collapsing ring in figure 5 for the constant- and variable-core models. 

5.1. Energy and impulse 
For the run just described, which is the most significant of our series, we present now 
in figure 6 the computed percentage change of the non-zero components of linear 
impulse P and of the energy E defined by equations (3.4) and (3.10), which represent 
a measure of the quality of the runs from a physical point of view. The graphs are for 
both constant- and variable-core models. For constant core, the computed variations 
of linear impulse and energy are less than 0.01% and 0.05% respectively at the end 
of the run. For variable core, the change in linear impulse is less than 1% and the 
change in energy is less than 3% at the end of the run. 

5.2. Curvature, torsion and stretching near collapse 
Other measures of the quality of the collapse computation are presented in figure 7. 
This figure shows the overlapping of vortex elements q, the normalized curvature k, 
the torsion 7 and the normalized rate of change of the magnitude of vorticity sw,  
given respectively by (2.13), (3.1), (3.2) and (3.23), us. arc length s. The corresponding 
time in the evolution of the ring is t = 0.18. The origin in all of these plots is at 
the value of s for the point Xd, which, at overlapping time tm, is the collapsing point 
xc.  The graph of the overlapping shows adequate resolution up to this time. The 
normalized curvature graph indicates no regions of large normalized curvature, which 
means we are still inside the regime of validity of the Biot-Savart model. The torsion 
graph shows that even higher derivatives of the filament, computed numerically, are 
still well behaved, even though they have some noise in the form of very short waves. 
The two peaks in the torsion are produced by the curvature minima that can be seen 
in figure 7(c) .  The rate of change of the magnitude of vorticity s, shows two maxima 
corresponding to the collapsing regions of the ring. The plots correspond to the 
run with no variable resolution (same as in figure 5), which results in considerably 
reduced levels of noise in curvature and torsion, in comparison with the run with 
variable resolution. 

5.3. Dependence of the strain-rate growth on the core radius 
For the circulation r and the geometric parameters a, b and c of the initial condition 
presented in figure 5, we computed the evolution of rings with different initial core 
radii. We changed the initial number of grid points no in order to keep the initial 
minimum overlapping qmin > 4. The strain rate a, was measured on the upper axis 
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FIGURE 7. (a) Top and side views of the collapsing ring in figure 5 at t = 0.18. Also included are 
graphs of (b)  overlapping q, (c) normalized curvature 2, (d )  normalized torsion T and (e) normalized 
rate of change of vorticity magnitude s, us. arc length s. The origin s = 0 is at the point Xd,. 

(0, 0, x3) as explained in 8 3. These runs were done with the variable-core model (2.14). 
The stop time for the computations is the point at which the filaments touch for the 
first time, which corresponds to 6 / d ,  = 1. As we decrease the initial core radius 
from 60 = 0.07595 to 0.03, all of the am curves monotonically increase with time. The 
collapse time decreases while the strain rate increases, as expected, when a smaller 
initial core radius is chosen. The inverse of the distance dm normalized with the core 
radius 6 is also monotonic in its evolution towards collapse. 

As we continue decreasing the core radius from 60 = 0.03 to 0.02, the collapse time 
inverts its previous behaviour and starts increasing, which can be seen in figure 8(a) 
for the strain rate a,. All of the curves presented are for the variable-core model 
except the dashed one, which is for the constant core model. The non-monotonic 
behaviour occurs for both variable- and constant-core models, as can be observed 
by comparing the dashed curve with the continuous line for the initial core radius 
60 = 0.02. The variable-core curve for this initial core radius corresponds to the 
evolution of the ring shown in figure 5. We can reduce the collapse time again 
by increasing the aspect ratio of the ring as shown by the curve with b = 0.2. In 
figure 8(b), the graph for the inverse of the normalized distance 6 / d , ,  it can be seen 
that, as the initial core radius is decreased, an interval of time appears in which 
the evolution towards collapse stops. In fact, it even reverses for a while for the 
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FIGURE 8. (a) Maximum strain-rate eigenvalue a,,, in the upper axis ( O , O , x s )  and ( b )  inverse 
normed distance S / d ,  us. time t ,  for the variable-core model with b = 0.4, c = 0.5 and core radii 
60 = 0.03, 0.0275, 0.025, 0.0225, and 0.02. The dashed line corresponds to the constant core model 
with SO = 0.02. Also included is a curve for a higher-aspect-ratio Lissajous-ellipse with b = 0.2, 
c = 0.5 and 60 = 0.02. Figure 5 corresponds to the non-monotonic evolution with 60 = 0.02 and the 
variable-core model. 

smaller initial core radii. After this 'bounce back' interval of time, collapse resumes. 
The elimination of the bounce back effect can be achieved by choosing a higher 
aspect ratio, as mentioned before. In figure 8 we also mark the validity limit of the 
Biot-Savart model given by (3.26). 

5.4. Quantijication of strain-rate eigenvalue intensijication 
To characterize the observed strain-rate growth, we fitted the results presented in 
figure 8(a), for the variable-core model with 60 = 0.02, with a functional form 6, 
representing the data, which, since there is no theory, we arbitrarily choose as 

- a, a, = - 
t ,  - t + b, W t ,  - t )  + c, + a, t . 

The fits were done alternatively with d, = 0, which corresponds to the function 
without the linear term, and b, = 0, which corresponds to the function without the 
logarithmic term. To find the parameters t,, a,, c, and b, or d,, we first fit a fifth-order 
polynomial to ail, which is shown in figure 9(b). We then extrapolate the value of 
the time tc where a;' is zero. Once we have the collapse time t,, we fit a, to obtain 
the rest of the parameters of the function Em. The curve fittings are done using a 
standard package subroutine (MINPACK), which fits nonlinear curves by least-squares 
using a modified Levenberg-Marquardt algorithm. The fitting region is selected as 
follows. We choose the final-time end according to the validity limit (3.26); we then 
fit regions with different lower-time ends until we obtain the best parameters in 
terms of the Euclidean norm of the difference between experimental and fitted points 
11 a, - Em 11. The best fits are, for b, = 0, (tc,ac,cc,dc) - (0.181581,59.1, -379.6,688.6) 
and, for d, = 0, (tc, a,, b,, c,) - (0.181614,63.0,83.7,193.3). Notice that the difference 
in the values of a, corresponding to these curve fittings is only 6%. The last fit, 
obtained for the function including the logarithmic term, is slightly better. This fitting 
was performed using 101 sampling points, spaced every 30 time steps (At = 
corresponding to the time interval 0.1503 < t < 0.1806. At the lower bound of the 
interval, the distance between the collapsing portions of the filament is 2d,/6 - 11 
core radii. Notice that, because b, > 0 in this fit, the logarithmic term reduces the 
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FIGURE 9. (a) Fitting of the strain-rate eigenvalue a, for the evolution of the ring in figure 5. 
( b )  The collapse time t ,  is obtained from extrapolation (dashed line) of the inverse of am. ( c )  Fitting, 
in log-log scales, of the function 6,  with the logarithmic term. The Euclidean norm of the difference 
(am - gm), between experimental and fitted points, divided by the number of points in the fitted 
interval, is fnormlm = 0.427493. 

growth of a,. The results of the fit can be seen in the original semi-logarithmic scales 
in figure 9(a), and also in log-log scales in figure 9(c). In the graph with the log-log 
scales, the time variable has been changed to ( tc  - t )  so that collapse now progresses 
towards the left. The last point of the numerical results in the plot corresponds to 
to". In figure 9(c), it can be seen that there is a region of the experimental points 
behaving according to the functional form (5.1) used for the fitting. Near collapse, 
the deviation of the experimental points from the fitting starts after the validity limit 
of the Biot-Savart model is passed. It can also be observed that the first singular term 
becomes dominant only as the validity limit of the model is approached, indicating 
that the self-similar regime for this model is small. The fitting region, chosen as 
explained before, leaves out the last computed points which, beyond the validity limit 
of the model, show a tendency towards saturation. 

5.5. Magnitude and alignment of vorticity on the Jilament 
In figure 10 we plot, in semi-logarithmic scales, the maximum of the vorticity mag- 
nitude lmlmx on the filament for the variable- and constant-core models, and the 
vorticity magnitude loci at the collapsing point xc for the variable-core model. For 
this last case, we observe qualitatively in the figure that the maximum of the vorticity 
magnitude and the vorticity magnitude at the collapsing point exhibit faster than ex- 
ponential growth. The constant-core model exhibits an unphysical constant maximum 
vorticity magnitude, even though this model shows the same strain-rate intensification 
behaviour as the variable-core model (see figure 8). An important question we cannot 
answer with the single-filament Biot-Savart model is whether or not the evolution 
of the strain rate and vorticity in the close vortex interaction saturates or continues 
its near singular behaviour. In recent work by Kerr (1993) the presence of singular 
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FIGURE 10. Evolution of the vorticity magnitude 101 on the filament for the initial conditions in 
figure 5, with the variable- and constant-core models. 

behaviour during the close interaction is suggested. This author reports that the peak 
vorticity and the peak axial strain-rate component, which is aligned with vorticity, 
have faster than exponential growth: cop and eyy,p - l/(tc - t) in agreement with 
self-similarity. 

As mentioned in the introduction, the alignment of vorticity with the eigenvector 
of the middle strain-rate eigenvalue f i  has been reported for vortex reconnection 
(Pumir & Siggia 1989, 1990; Boratav et al. 1992; Kerr 1993). In figure 11 we show 
the evolution in time of the absolute value of the dot product i2p -w / lo l .  This dot 
product was computed at the collapsing point xc of the LE ring in figure 5 with 
different core radii. We observe that, as time progresses, this value in fact tends to 
1 for all core radii. For the bounce case, 6 = 0.02, this occurs relative early in time, 
with the bounce effect in the form of a valley at about t = 0.11. It has been argued 
(Jiminez 1992), that the observed alignment is a consequence of the formation of 
two-dimensional vortex configurations. Figure 11 is consistent with this idea, as it 
shows the evolution of the collapsing segments of the filament towards the nearly 
two-dimensional, antiparallel configuration, which is reached relative early in time for 
the bounce case. 

5.6. Strain rate and vortex stretching Jield visualizations 
Direct visualization of the three-dimensional fields seems to be the most efficient way 
to capture spatial coherence (She et aE. 1990b). We produced pictures of the strain 
rate and vortex stretching fields in the diagnostic box, introduced in $3, surround- 
ing the collapse region (figure 12). Figure 13 shows isosurfaces of the eigenvalue 
c1 at 80% of the maximum in the diagnostics box for the times t = 0.18, 0.1807 
and 0.1814. The data correspond to the bounce case presented in figures 5 and 9. 
The maximum in the box increases with time. The filaments shown have one fifth 
of the actual core radius. The first time (figure 13a) corresponds to a distance of 
2dJ6 - 3.7 core radii between centerlines; the next time (figure 13b) is close to 
the validity limit dm/6 - 1.5, given by equation (3.26), which occurs at t - 0.1806; 
the last time shown (figure 13c) corresponds to a time in which the filaments had 
already started touching d, /6  - 1. These pictures show that the strain rate is al- 
ways maximum off the filaments, which agrees with observations by Boratav et al. 
(1992). As collapse is approached, two main maxima regions become dominant, 
as can be seen in the picture for the overlapping time to, (figure 13c). For this 
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FIGURE 11. Alignment of vorticity w with the eigenvector eg of the middle strain-rate eigenvalue, 
at the collapsing point xe, vs. time t. The ring parameters are b = 0.4, c = 0.5 and core radii 
60 = 0.07595, 0.07, 0.06, 0.05, 0.04, 0.03 and 0.02. The last core radius corresponds to the evolution 
of the ring in figure 5. 

FIGURE 12. (a) Diagnostics box for the run with core radius 60 = 0.07595 surrounding the collapse 
region. (b) Zoom shows an isosurface of the strain-rate eigenvalue a. The filament thickness shown 
is one fifth of the actual core radius 6. 



Vortex intensijcation and collapse 31 1 

last time, representations of the largest positive and largest negative eigenvalues at 
the upper maximum and on the filament are also shown. The middle eigenvalue, 
which is positive, perpendicular to the others and aligned with vorticity, has a much 
smaller relative magnitude and therefore is not visible. For the position of the upper 
maximum at t = 0.1806, we measure a ratio a/P N 15. The eigenvector of a in the 
upper maximum is horizontal, in the lower maximum is vertical, and on the filament 
appears rotated about 45" with respect to the previous positions. The orientation 
corresponding to the entire field can be seen in figure 14. In this figure, we show 
the eigenvectors of the eigenvalue a in a plane approximately perpendicular to the 
vortex filaments. We also include the two maxima regions of a in the same plane. 
The length of the sticks representing the eigenvectors is proportional to a. The 
pattern of the eigenvectors shown in figure 14 has been observed in continuum sim- 
ulations of the vortex rings collision by Kida et al. (1991). In the case of the second 
reconnection reported by these authors, the pattern is still present for late times, 
where reconnection already has an important degree of progression. With respect to 
the middle eigenvalue, the patterns we observe (not shown) are similar to the ones 
presented in other experiments and simulations (Schatzle 1987; Winckelmans 1989; 
Pumir & Siggia 1990; Kerr 1993). The eigenvalue a and its eigenvector were usu- 
ally not subjects of special attention. Nevertheless, previous descriptions of them 
(Winckelmans 1989; Kida, Takaoka & Hussain 1991; Kerr 1993) are consistent with 
what we observe. It seems to be recognized (Jimknez 1992; Kerr 1993) that the 
eigenvalues a and y are associated with the two-dimensional nature of the antipar- 
allel configuration of the vortex tubes and that the middle eigenvalue f i  relates to a 
three-dimensional effect introduced by the curvature of the vortex tubes. 

Particular to our work, we only examined times previous to core overlapping. 
Also, we measure strain rate off the filament and concentrate our attention on the 
largest eigenvalue a rather than the middle eigenvalue p, as the first quantity is much 
larger in magnitude. Previously, attention has been given almost exclusively to P ,  
which aligns with the original filaments. The most important consequence of the 
characterization of a as given by figures 9, 13 and 14, is that the major impact of any 
singular or near-singular behaviour of the strain rate and its associated maxima in 
vorticity amplification does not occur on the original vortex filaments or vortex tubes, 
but off them, on vorticity aligning with the eigenvector of a. The amplification of this 
vorticity would be the largest possible in the neighbourhood of the collapse region. 
In fact we believe that low level or background vorticity picking up this singular 
or near-singular strain-rate growth, is the mechanism for bridge formation in vortex 
reconnection. 

To compute the normalized vortex stretching (3.22) off the filament, it is necessary to 
have a distributed vorticity distribution. The filaments defined by (2.3) and (2.4) have 
non-zero vorticity off the filaments, but it is spurious in the sense that, according to our 
model, only vorticity on the filament is dynamically relevant. Nevertheless, we wanted 
to determine whether or not we could establish some kind of comparison of vortex 
stretching off the filaments with other kinds of simulations by using this spurious, 
off the filament vorticity distribution. Very close to collapse, the normalized vorticity 
distribution shows an X-shaped structure, also observed in continuum simulations 
(Zabusky, Silver & Pelz 1993; also personal communication, T. Scheidegger). At the 
overlapping time too = 0.1814 we show in figure 15, in addition to the filaments and 
eigenvectors, the normalized rate of change of the magnitude of vorticity s, (see 
equation (3.23)) represented by the objects, and a vector line, released from one of the 
objects, that traces the normalized vortex stretching field (3.22). The vortex stretching 
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FIGURE 13. Isosurface of the strain-rate eigenvalue a at the times (a) t = 0.18, (b)  t = 0.1807 
and (c) t = 0.1814 of the evolution of the ring in figure 5. The isosurface threshold is 80% of 
the maximum at each time shown. Normal arrows represent eigenvectors of CL. Arrows with the 
arrowhead reversed represent eigenvectors of the eigenvalue y . The filament thickness shown is one 
fifth of the actual core radius 6. 

line shows a ‘torus’-like pattern similar to the one observed in continuum simulations 
of vortex reconnection by Zabusky et al. (1991). 

6. Collapse energy density 
We have at present no theory to explain collapse as established in terms of the 

parameters in figure 1, which was computed numerically. This section describes 
initial work we have done to find such a theory. It is important to realize that the 
variation of geometric parameters and initial core radius of our initial conditions 
(2.9) corresponds to a variation of the motion invariants. In particular, changing 
the core radius, while keeping constant the geometric parameters, still represents a 



Vortex intensijication and collapse 313 

FIGURE 14. Orientation of the eigenvector of the strain-rate eigenvalue u, in the collapse region, 
at the time t = 0.1814 of the evolution ring in figure 5. The upper and lower tl maxima are also 
indicated. The filament thickness shown is one fifth of the actual core radius 6. 

change in the total energy of the vortex ring. The graph with the collapse boundary 
in the parameter space (figure l), shows the dependence of collapse on the motion 
invariants. 

6.1. Self-similarity ansatz and zero-energy-density condition 
Previous work has underlined the importance of self-similarity for collapse (Fukuyu 
& Arai 1991; Pumir & Siggia 1990; Kerr 1993; de Waele & Aarts 1994). We explore 
the implications of a self-similarity ansatz for the energy of a collapsing configuration. 
To characterize the state of collapse, we use the following ansatz: 

x(o,t*) = W') X(0,O)  = W') Xo(G) 9 

which can be valid for a whole vortex filament or for some of its regions only. 
The energy of a filament is 

This expression should be evaluated using a cut off to avoid the singularity in the 
kernel. Substituting (6.1) in the energy expression, we obtain 

= A(t') Eo , dxo * dxo' 
871 C' c 1x0 - xo'l 

E = n(t.1 J J 
which is constant for inviscid motion. The only condition in which the above 
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RGURE 15. Strain rate and vortex stretching fields at t = 0.1814 of the evolution of the ring in 
figure 5. The objects are the isosurface of the normalized rate of change of vorticity so, at 65% of the 
maximum. The line with the torus-like pattern, launched from one of the vortex stretching objects, 
traces the normalized vortex stretching field (3.22). The vortex filaments and the eigenvectors of the 
strain-rate eigenvalues, M and y, on and off the filament, are also shown at the position of M~ and 
at the point Xd,. The filament thickness shown is one fifth of the actual core radius 6 .  

is true is 

As this condition may apply only locally to the collapse region on the filament, we 
heuristically choose as diagnostic the energy density 

Eo = 0 .  (6.4) 

&(s’) = 1 &(S’,S) ds , (6.5) 

which is the first integral in the expression for the approximate energy (3.10), with 

A ‘strong’ condition to have collapse, or € = 0, would be 

along the filament. The ‘weak‘ case is when the kernel Kb has mutually cancelling 
contributions. To verify whether either of these two cases occurs during collapse, we 
compute the kernel of the energy density Kg, defined by (6.6). Analogous substitution 
of the self-similarity ansatz in the linear and angular impulse definitions results in the 
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collapse conditions PO = o and M O  = o also. The linear momentum in the xs-direction 
in fact means that the area between the projections onto the plane ( x I , x z )  of the 
collapsing regions of the filament goes to zero, which in fact is the case. We compute, 
therefore, the linear and angular impulse density components in the x3-direction, 
dP/ds and dM/ds, which are given by the kernels in (3.4) and (3.5). It should be 
mentioned that Fukuyu & Arai (1991) find with a simple phenomenological model, 
in the limit l/rc >> d ,  >> 6, that the contribution of a singular point to the energy 
tends to zero for self-similar collapse. 

6.2. Calculation of the function A 
The function ;1 can be calculated from the velocity on the filament, as given by the 
Biot-Savart law 

Taking the dot product with 20 we obtain an ordinary differential equation for 1: 

with the solution 
112 

A@*) = (1 - ;) 7 (6.10) 

which agrees with the work by Siggia and Pumir (Siggia 1985; Pumir & Siggia 1987) 
and was also found by de Waele & Aarts (1994). The strain rate induced by the 
filament on itself is 

(6.11) 

which has to be evaluated with a cut off. The operator D is defined in equation (3.17). 
After substituting the self-similarity ansatz (6.1) in the previous expression, we find 
the self-similar form 

Uo 3 (6.12) 
t: ( V + V T )  

uo = - 
( V + V T )  * 1 ( V + V T )  u(x,t 1 = - 

2 12 2 t; - t* 2 

which is singular for t: > 0. 

6.3. Global and local diagnostics with the energy density 
In figure 16, we present the computed evolution in time at the collapsing point xc 
of the linear and angular impulse density components in the x3-direction, dPc/ds 
and dMc/ds, the energy density 8, and the energy density kernel K g c .  The energy 
density kernel K8c is computed with both s and s’ corresponding to xc.  Therefore, it 
represents the local contribution to the energy density at the collapsing point. All of 
these graphs correspond to the bounce case in figure 5 ,  with the strain rate in figure 9. 
The bounce is visible in the graphs of linear impulse dPc/ds (figure 16a), and energy 
density 8, (figure 16b), as a valley at about t = 0.11, followed by a rapid decay as 
collapse takes place. The angular impulse density dMc/ds also decays (figure 16a), 
but does not show the bounce present in the other graphs. The kernel of the energy 
density at the collapsing point Kec has faster than exponential growth, as can be seen 
qualitatively in the semi-logarithmic graph in figure 16(a), even though the energy 
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FIGURE 16. Evolution of (a) linear and angular impulse densities, dY,/ds and dM,/ds; and 
(b)  energy density kernel KBc and energy density 8, at the collapsing point xc. The parameters of 
the ring correspond to figure 5. 

density €, is approaching zero at the same time. The rapid decay in the linear impulse, 
angular impulse and energy densities is in agreement with the conditions suggested 
by the self-similarity ansatz and therefore constitutes signatures of collapse. 

To obtain a more complete picture of collapse, we examine in detail diagnostics 
along the vortex ring for t = 0.18, which is close to the collapse time, but still before 
the validity limit is reached. In the following graphs, the origin is at the value of s 
corresponding to the point Xd, which, by this time, is very close to the collapsing point 
xc (see figure 5). In figure 17, for the same time as the previous graphs, we show the 
linear and angular impulse density components, dP/ds and dM/ds, the kernel of the 
energy density &, with s' corresponding to the point Xd,, and the energy density € vs. 
arc length s. The linear impulse density dP/ds has regions close to zero surrounding 
the collapsing segments of the ring. The angular impulse density dM/ds shows a zero 
very close to the collapsing point, but we had expected a wider region close to zero. 
We observe that the kernel of the energy density K s  presents two opposite, cancelling 
contributions, one local and the other mutually inductive. This shows that collapse 
corresponds to the 'weak' case referred to before. The plot of the energy density B 
shows that the collapsing regions on the ring correspond to very localized minima, 
approaching zero as time increases. 

6.4. Energy density as a criterion for surgery 
A scenario of the change in the contributions to the energy in a collapsing vortex 
tube has been proposed by Chorin (19904, but the considerations presented there 
are for local collapse and therefore are not relevant to the antiparallel configuration 
formation of our non-local collapse case in $5 .  In his scenario of local collapse, 
Chorin maintains that the self-energy, or the contribution to the energy due to 
local interactions or interactions of vortex segments with themselves, increases as the 
filament stretches. In order to maintain constant energy, the mutual contributions 
must become negative, which means the tube should fold. In terms of the energy 
density 6, the picture we observe for non-local collapse is as follows. Even though 
the local contribution K&c to the energy density d increases, as the larger peaks in 
the Kgc and Kg plots in figures 16 and 17 show, these increases are cancelled by the 
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FIGURE 17. (a) Linear impulse density dP/ds, (b)  angular impulse density dM/ds (c) energy density 
kernel Ka and (d) energy density 8 us. arc length s, at the time t = 0.18 of the evolution of the ring 
in figure 5. In (b ,c )  the last two graphs the curves for t = 0.1815 are also included. The origin s = 0 
in the plots and s' in the energy density kernel computation correspond to the point Xd,.  

other approaching antiparallel segment of the filament, not maintaining the energy 
density constant, but reducing it to zero through the cancellation (figure 17). 

In three-dimensional vortex methods, collapse results in paired antiparallel fila- 
ments, which have a minimal contribution to the kinetic energy of the flow, as the 
results in the previous paragraph indicate. The paired filaments consume excessive 
computational resources, making the continuation of the computations practically 
impossible. This necessitates a surgery algorithm to eliminate these collapsed fila- 
ment segments. Such an algorithm has been proposed by Chorin (1990b, 1993). In 
this algorithm, regions undergoing non-local collapse are identified using criteria of 
closeness of approach and orientation. Surgery is performed assuming these regions 
have 'infinite temperature'. In contrast with the condition of infinite temperature 
for collapse, the zero-energy-density criterion we are suggesting can be quantified in 
a straightforward manner. Therefore, we believe that the energy density could be 
used as a diagnostic quantity for a surgery algorithm. Also, the surgery of zero- or 
low-energy-density segments of the filaments only constitutes a small change in the 
total energy of the flow, which means an algorithm with very small dissipation. 
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7. Multi-filament simulations 
The objective of performing multi-filament simulations is to observe the behaviour 

of the collapsing LE vortex ring as new degrees of freedom are introduced. The 
two aspects we will examine are, first, whether or not the formation of smaller 
scales, allowed by the multi-filament model, destroys the evolution towards collapse 
and, second, the characteristics of vorticity and strain-rate amplification during the 
close vortex interaction. We find that the O(n2) nature of the Biot-Savart direct 
method (where n is the number of grid points in the ring) severely limits the multi- 
filament collapse computation. Previous simulations with direct methods include the 
stability study of a vortex ring by Knio & Ghoniem (1990) with a maximum of 7320 
grid points, the vortex ring collision problem (vortex ring merger) by Anderson & 
Greengard (1989) with a maximum of 5490 grid points per ring, the same case by 
Winckelmans (1989) with a maximum of 6272 grid points per ring and the simulation 
of a circular ring with different initial perturbations by Inoue (1988) with a maximum 
of 1180 grid points. From the single-filament runs, we know that in order to observe 
a large vorticity amplification, we need a small ring thickness &, but, to have a 
small core size, it is necessary to increase the number of grid points in order to 
keep the overlapping (resolution) to an acceptable minimum. Therefore there is a 
trade-off between the ring thickness and the number of grid points we can use. 
The parameters of the ring we select are a compromise between ring thickness and 
computational expense. Notice that the case bc = 0.07595, which we present later 
in detail, corresponds to the lowest strain-rate amplification in our single-filament 
studies. Our simulations have a relative large ring thickness bc, even though we 
initially employed up to 45720 grid points. We exploit the antisymmetry of the 
ring, so that the velocity has to be computed only at half the grid points. The 
more interesting cases with higher vorticity amplification, observed in the previous 
single-filament simulations, will require the use of fast summation techniques. 

K M .  Fernandez, N. J. Zabusky and F! M .  Gryanik 

7.1. Multi-$lament Biot-Savart model 
The multi-filament algorithm is obtained by extending the expressions for the single- 
filament ring. The vorticity of the multi-filament ring is (2.3) 

which is the sum of the contributions of each filament forming the vortex tube. The 
total number of filaments in the ring is n f .  

The velocity induced by the multi-filament ring is now (2.5): 

The function g is defined by (2.6). 
The strain rate is (3.18) 

where q ( p )  is defined by (3.20) and D by (3.17). Using this equation, we compute, 
as diagnostics, the strain-rate eigenvalues, the normalized vortex stretching (3.22), 
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and the normalized rate of change of the magnitude of vorticity (3.23) for the multi- 
filament ring. We also compute the distance d ,  (3.25), introduced earlier. For the 
multi-flament ring we find the minimum distance d,  for all the filaments, and for the 
grid points on the centreline. 

7.2. Vortex ring discretization 
The multi-filament LE ring is constructed around either the centreline given by 
(2.9) or the centreline corresponding to the position of a single-filament ring at 
some time close to the collapse time. Once the no grid points in the centreline 
are established, construction of the multi-filament ring proceeds by distributing the 
filaments concentrically in nf ‘layers’ around the centreline. At each grid point in 
the centreline, using a cubic spline, we compute the local Frenet-Serret coordinate 
system, i.e. the unit tangent 3, normal ii, and binormal 6 vectors (3.3). The grid points 
on the concentric nl filament layers are distributed on planes normal to the centreline, 
defined by the local coordinate system. Each concentric filament layer is located at a 
radius 

6 C  r = k -  
nl 

(7.4) 

and has 

filaments, where k is the layer number (for the first layer k = 1, for the outer layer 
k = nl, the centreline is k = 0) and 6c is the thickness of the multi-filament ring 
(figure 18). Every time a new layer of filaments is produced, this layer is shifted in 
the azimuthal direction by 2 a / n ,  rad to avoid alignment of filaments in the radial 
direction. The distances between filaments in the radial and azimuthal directions are 
(figure 18) 

n, = 6 k  (7.5) 

JC 2nh,k 
h, = - and ha = - 

n1 na 
In the cross-section of the ring, for a distribution of filaments given by (7.4) and (7.5), 
the overlappings in the radial and azimuthal directions are 

where 60 is the initial filament core size at each grid point. For 6c/60 - 2 and nl = 4, 
q, and qa - 4. 

The circulation of each filament is assigned according to Ti = C,exp( - r ) / @  ), 
where r is the distance from the ith filament to the centreline of the ring (7.4). The 
normalization constant C, is chosen, so that the total circulation is rc = ~ ~ ~ , - ,  ri = 1, 
where the total number of filaments distributed in the nr concentric layers (7.5) and 
the centreline of the ring is nf = 1 + 3n4nlf 1). Each concentric layer has n, filaments 
(7.5) (see figure 18). The total initial number of grid points is n,o = nf ,  where no is 
the initial number of grid points per filament. 

The time step was chosen based on the experience with the single-filament runs 
and the following estimate. We define a maximum time step 

A& At* < -. 
UC 

The critical velocity uc is the velocity magnitude at the core 60 of a rectilinear, 
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FIGURE 18. Cross-section of the initial condition for a ring with 6~ = 0.07595 and 60 = 0.05. The 
number of layers is nl = 6 and the number of filaments is nf = 127. The contours are vorticity 
magnitude from 0 to 100% of the maximum. 

infinite, or two-dimensional point vortex and the critical grid distance Axc is the 
radial inter-filament spacing 

6 C  and Ax, = h, = nr u, = - Ti 
271.60 

(7.9) 

Using the normalization t = t"/ts = t' Tc/(47ca2) (2.15), the maximum time step is 

(7.10) 

where the quantity in the centre is a lower bound (notice that Tc /T i  > 1) that is used 
as a conservative rule. The geometric parameter a = 1 in our initial condition (2.9). 

We performed simulations with the constant- and variable-core models (Fernandez 
1994). The main feature of the constant-core simulations is the nearly constant 
vorticity and the saturation of strain-rate amplification. However, it must be noticed 
that for this model, the conservation of volume is violated in the regions of large 
filament stretching, which are present during the close vortex interaction. 

7.3. Variable-core simulations 
To lower the expense of the higher-resolution runs with the variable-core model, we 
started the multi-filament computations from an initial condition corresponding to 
the evolution of a single-filament ring at a time close to collapse. The parameters 
of the runs are presented in table 1. From two series of runs with dC = 0.1 and 
0.07595, only the latter is presented. The single-filament ring at t = 0.135, when 
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FIGURE 19. Evolution of the variable-core multi-filament ring v6. The single-filament ring had 
initially a = 1, b = 0.4, c = 0.5,& = 0.07595 and TC = 1. The multi-filament ring has nl = 6 layers, 
nf = 127 filaments and = 360 grid points per filament for a total of nm =45 720 grid points 
initially. The times in the evolution are t = 0.1695,0.1785 and 0.1875. Only every 10th filament 
and only every 6th grid point are displayed. Position of projections does not correspond to actual 
motion of the ring. 

Run 60 ni nf no nm 
vl  0.07595 0 1 360 360 
v2 0.04 4 61 360 21960 
v3 0.04 5 91 360 32760 
v4 0.04 6 127 360 45720 
v5 0.05 5 91 360 32760 
v6 0.05 6 127 360 45720 

TABLE 1. Multi-filament runs with the variable-core model. Multi-filament simulations start from a 
single-filament ring with a = l , b  = 0 . 4 , ~  = 0.5, 6~ = 0.07595 and r c  = 1 at t = 0.135. The time 
step was At = 3 x lo-". Runs v4 and v6 were recomputed with At = 1.5 x in the intervals 
0.18 < t < 0.1875 and 0.165 < t < 0.192 respectively. 

the inter-filament distance is 2d,/& - 3.33, is used as the centreline to generate the 
multi-filament ring. The outer filament layer is at a distance 6c from the centreline. 
According to the conservative rule in (7.10), the time step for 60 = 0.04 and nl = 5 
should be At = 3.038 x In the single-filament runs with variable core, for 
60 = 0.07595, the time step At = 5 x low4 shows an accuracy of three significant 
figures in the average velocity. For the single-filament case with 60 = 0.04, the time 
step we used was At = but the circulation of this single-filament ring was r = 1 
(in the multi-filament case f c / f i  > 1, also see inequality 7.10). The time step selected 
in these multi-filament variable-core computations was At = 3 x For the higher- 
resolution cases v4 and v6, we repeated the final portion of the runs with half the time 
step. The evolution of the ring with the variable-core model for the highest resolution 
v6 can be seen in figure 19, where only every 10th filament and every 6th grid point 
on each filament, are displayed. At the end of the variable-core multi-filament runs, 
including the highest resolution v6, we observe the development of a smaller wavy 
structure on top of the collapse region, which we present in coming paragraphs. 
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FIGURE 20. Diagnostics for the variable-core model with with 60 = 0.04 (v3, v4) and 0.05 (v5, v6). 
( a )  Maximum vorticity magnitude ~ci&ax on the ring us. time t .  ( b )  Strain-rate eigenvalue u, us. 
time t .  The cases presented are for runs v l  and v3 to v6 with nl = 0 (single-filament), n~ = 5, 6 and 
u = 1, b = 0.4,~ = O S , &  = 0.07595,rc = 1. 

In figure 20 we show the resolutions v3, v4, v5 and v6. The two last have 
larger filament core size 60 = 0.05. Run v6 with half the time step did not show 
significant differences. The smaller filament core size, 60 = 0.04, has a somewhat 
faster vorticity and strain-rate amplification. In general, even though the evolution 
of the collapse and the characteristics of the collapse region are similar for all 
of the runs, we do not observe a clear trend towards convergence as we change 
the resolution. Our results seem to be dependent on the initial filament core size 
a0, which has also been observed in other simulations (Anderson & Greengard 1989; 
Almgren, Buttke & Colella 1994). We believe the solution of this question will require 
convergence studies at smaller values of the filament core size SO, since the ratio of 
&/So - 2 employed in current simulations, including ours, is still far from the 
condition that do must be much smaller than any scale in the flow. An important 
difference with respect to the constant-core simulations is that the maximum vorticity 
magnitude and the maximum strain rate do not saturate, but continue to grow during 
the close vortex interaction. The largest growth starts with the appearance of the 
smaller vortex structure on the top of the collapse region. Even though this vortex 
structure appears consistently for all resolutions examined, further convergence testing 
at lower values of 60 is required. 

We now examine more closely the case with the higher resolution v6. The evolution 
towards collapse is shown in figure 19 for the times t = 0.1695,0.1785 and 0.1875. 
This ring initially had n,o = 45720 grid points, which by the end of the run increased 
to n, = 189906 (this last time not shown). The particular feature of the evolution of 
the ring is the small inverted S-shaped wave forming in the upper part of the collapse 
region. In figure 21 we present cross-sections of the ring showing vorticity contours 
(left portion) and the position of the filaments in the time 0.165 < t < 0.1875. The 
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F~GURE 21. Vorticity cross-sections (left half) and distribution of vortex filaments at t = 0.165, 
0.1695, 0.174, 0.1785, 0.183, 0.1845, 0.186 and 0.1875, for the resolution nl = 6, with filament core 
radius a0 = 0.05 (run v6). The last four times are at shorter intervals. The thresholds of the vorticity 
contours are between 0 and 100% of the maximum. In the left portion of the dipole the filament 
layers are coded using different symbols (see figure 18). 

intervals between the last four time frames in the figure are shorter. The cross-sections 
are located at the point of closest approach X d ,  (3.25) and are normal to the vorticity 
at that point. The filament layers are marked with different symbols (left portion of 
the cross-sections). The open square marks the centre of the filament. The thresholds 
of the vorticity magnitude contours are between 0 and 100% of the maximum. We 
observe the core flattening process characteristic of the close vortex interaction, which 
has been observed in previous continuum (Ashurst & Meiron 1987; Pumir & Kerr 
1987; Pumir & Siggia 1990; Shelley & Meiron 1991; Kida et al. 1991; Zabusky 
et al. 1991; Boratav et al. 1992) and Lagrangian (Anderson & Greengard 1989; 
Winckelmans 1989) simulations. The smaller, upper dipole structure at the last time 
shown, t = 0.1875, corresponds to the formation of the S-shaped structure. 

In figure 22, we attempt to quantify the dipole structure in the cross-sections 
presented. These quantifications consist of histograms produced by averaging the 
core size of the filaments and their circulation in horizontal bins or bands with width 
Ax3 (in the vertical direction) and length covering one half of the cross-section of the 
dipole in the horizontal direction x1 (see figure 21). The histograms on the left of 
figure 22 show the distribution of the core size with respect to the vertical x3-axis. 
The points correspond to a scatter plot in which the vertical axis is the actual value 
of the filament core size 6. The continuous line is the average core size in each bin. 
The second set of histograms (plots on the right in figure 22) present the same type 
of information, but now the points indicate the circulation Ti of each filament. The 
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FIGURE 22. Scatter plots with the distribution of the filament core radii 6 (left) and filament 
circulation ri (right) in the vertical x3-direction (see figure 21). The continuous lines are the 
average filament core radius and the average filament circulation respectively. The times are 
t = 0.1695,0.1785 and 0.1875, for run v6. The points are coded according to the filament layers (see 
figure 18). 

continuous line is the average circulation in each bin. The codes of the points can be 
seen in figure 18. The number of bins is kept constant for all of the times shown, but 
their width Ax3 changes as the elongation of the dipole structure in the cross-section 
increases (the bins cover from the minimum x3 coordinate of the filaments to the 
maximum at each time). The times shown are t = 0.1695,0.1785 and 0.1875. The 
histograms with the filament core size distribution indicate how the core size decreases 
with time. The smaller core sizes tend to concentrate in the upper part of the dipole, 
where the vorticity maximum is. The circulation histograms show that the upper part 
of the filaments always have the larger proportion of the circulation. 

The evolution of the vorticity for run v6 (do = 0.05, q = 6 )  is shown in the 
diagnostics box surrounding the collapse region, in figure 23. The isosurface of the 
vorticity magnitude, shown in this figure, is at the threshold 40% of the maximum for 
the times t = 0.183,0.1845,0.186 and 0.1875. The view shown is at 45" rotation from 
the top view, or plane ( x l , ~ ~ ) .  In this sequence we observe the S-shaped structure 
formed by the upper filaments. For this filament core size, 60 = 0.05, this upper 
structure is thicker than in the case do = 0.04, which we show in figure 24. This upper 
structure has the vorticity maximum at the last time shown t = 0.1875 in figure 23 
(also see figure 21). 

In figure 24 we observe the evolution of the vorticity for run v4 (60 = 0.04, nl = 6 ) .  
The isosurface of the vorticity magnitude is at the threshold 40% of the maximum 
for the times t = 0.18,0.1815,0.1830 and 0.1845 (the evolution of collapse for this 
filament core size is faster, see figure 20). In this case, the rotation of the upper 
filaments as the wavy structure forms produces the finger-like appearance in the 
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FIGURE 23. View of the collapse region, for the resolution a1 = 6, with filament core radius 60 = 0.05 
(run v6). The vortex tubes are represented by the isosurface of the the vorticity magnitude at the 
threshold 40% of the maximum. The times are t = 0.183 (top), 0.1845,0.186 and 0.1875 (bottom). 

vorticity isosurface. Even though the vorticity has this finger-like shape, the vortex 
filaments are not folding back on themselves, but continue beyond the tip of the 
fingers (with lower vorticity of course), completing the 3’-shape of the upper vortex 
structure. It is important to notice that, as the upper vortex structure rotates, it tends 
to align with the direction of the largest strain-rate eigenvalue a which is oriented, in 
the maximum upper region, perpendicular to the original antiparallel configuration 
(shown in Fernandez 1994). This upper S-shaped vortex structure, has the maximum 
vorticity amplification by the last time in figure 24. 

The strain-rate eigenvalue fields a and j? continue to present the same orientation 
observed in the single-filament simulations, although the structure of the maxima 
regions is different. In the case of 01, the maximum region corresponds to an inverted 
U-shape (Fernandez 1994). In figure 25, we observe the top view, or plane ( x l , ~ ~ ) ,  of 
the collapse region at the time t = 0.183 of run v6. The vortex tubes are represented 
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RGURE 24. View of the collapse region, for the resolution nl = 6, with the filament core radius 
60 = 0.04 (run v4). The vortex tubes are represented by the isosurface of the the vorticity magnitude 
at the threshold 40%. The times are t = 0.18 (top), 0.1815,0.183 and 0.1845 (bottom). 

by the isosurface of the vorticity magnitude at the threshold 90% of the maximum. 
The smaller objects in the upper and lower part of the view shown, in between the 
vortex tubes, are the isosurface of the normalized rate of change of the magnitude 
of vorticity (3.23) at the threshold 75% of the maximum. The vector lines, released 
from a plane located in the upper part of the collapse region, trace, with positive and 
negative integration step, the normalized vortex stretching field (3.22). We observe 
that we have again a pattern similar to that found in the single-filament simulation. 
In the other hand, this pattern comes closer to the ‘torus’ shape observed in the 
continuum simulations (Zabusky et al. 1991). 
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FIGURE 25. Vortex stretching pattern. This top view, or plane ( x I , x ~ ) ,  of the collapsing region shows 
the isosurface of the vorticity magnitude at the threshold 90% of the maximum, for run v6. The 
time is t = 0.183. The smaller objects between the vortex tubes are the isosurface of the normalized 
rate of change of the magnitude of vorticity at the threshold 75% of the maximum. The vector 
lines trace the normalized vortex stretching. 

8. Conclusions 
The study of a simple collapsing vortex configuration, the Lissajous-elliptic (LE) 

vortex ring, has been presented. Exploration of the parameter space showed the 
different types of evolution of this ring and the collapse boundaries for three core 
radii. The periodic regime of the vortex ring is suitable for examining the long- 
time behaviour of the Biot-Savart model. We find that the algorithm breaks down 
through the appearance of a short-wave instability that becomes a 'local' collapse 
(figure 2). This instability of the single-filament Biot-Savart model is spurious because 
its wavelength is of the order of the core radius. 

In our single-filament simulations we find that the non-local collapse regime of 
the LE vortex ring exhibits a dependence on the initial core radius. Non-monotonic 
collapse can be induced by choosing a sufficiently small initial core radius. In the 
parameter space, this behaviour is visible as a shift of the collapse boundary to- 
wards higher levels of energy (figure 1). Quantification of the of the $lament strain 
rate shows faster than exponential growth prior to core overlapping. By fitting 
the functional form (5.1), we find that m,,, approaches self-similar, singular-like be- 
haviour in a small region close to the end of the validity limit of the Biot-Savart 
model. Plots of the vorticity magnitude on the filament in semi-logarithmic scales 
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also show, qualitatively, faster than exponential growth. In agreement with oth- 
ers (Pumir & Siggia 1990; Kida, Takaoka & Hussain 1991; Shelley & Meiron 1991; 
Zabusky et al. 1991; Boratav et al. 1992; Kerr 1993), we observe that the strain rate 
is maximum off the filament and that vorticity aligns, not with the largest, but with 
the middle eigenvalue of the strain-rate matrix. This fact suggests that vorticity 
picking up the largest available, singular-like, strain rate will not be on the fila- 
ments themselves. In this sense, bridge formation in vortex reconnection may be 
low-level vorticity, picking up the very large, off the filament strain-rate growth. 
Visualizations of the strain rate and vortex stretching fields show that qualita- 
tive aspects of direct Navier-Stokes simulations (Kida, Takaoka & Hussain 1991 ; 
Zabusky et al. 1991 ; Boratav et al. 1992) and the Biot-Savart results are similar. 
These include the patterns of direction of the eigenvector of the largest eigenvalue CI 

and the normalized vortex stretching (3.22). 
Collapse conditions on the density of the motion invariants were suggested by use 

of a self-similarity ansatz. These conditions, confirmed by the numerical experiments, 
are such that the line densities, associated with the linear and angular impulse and 
energy invariants, vanish in the collapsing regions of the vortex filament. The zero- 
energy-density condition for collapse provides a rational basis for initiating surgery 
in filament algorithms. 

In our multi-filament vortex ring simulations, performed with both constant- and 
variable-core models and different resolutions, we find that the vorticity of the 
constant-core model remains nearly constant until the end of the runs. The amplifica- 
tion of the strain rate a,,, is moderately faster than that observed for the single-filament 
case. This amplification saturates as the values of core overlapping in the centre- 
filament of the ring become 6 / d ,  > 1. At this time, when large vortex stretching is 
present, the constant-core model violates the conservation of volume. The saturation 
is not present in the variable core cases, where the maximum vorticity and strain-rate 
amplification corresponds to the formation of a smaller-scale vortex structure on the 
top of the collapse region. The confirmation of the existence of this structure still 
needs further study at higher resolutions. Quantifications in a cross-section in the 
collapse region indicate that the circulation tends to concentrate in the upper part of 
the dipole structure. Also in this region, we have the smallest vortex filament core sizes 
6. The strain-rate pattern is similar to that produced by the single-filament case. The 
main difference is that the lower maximum observed in the single-filament case has 
vanished. The vortex stretching pattern in the collapse region for the multi-filament 
case is now closer to the ‘torus’ shape observed in the continuum simulations. 
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